

©2018. Microduino Inc. - All Rights Reserved 1

Itty Bitty City Code Companion – Arduino IDE

©2018. Microduino Inc. - All Rights Reserved 2

WELCOME!

What the Itty Bitty City Code Companion brings to you!

The Itty Bitty City Code Companion gives even more

opportunity to enjoy Itty Bitty City at a more in-depth level.

In this Code Companion, you will see how you can change

the way projects function, or even make a new project.

With Itty Bitty City you can make intelligent, technology-

based projects, and with the Code Companion, you can

explore even more.

What we are going to do with Itty Bitty City Code

Companion

In the Itty Bitty City user manual, you can follow the basic

steps to program your projects from our ready to use

Arduino IDE project files and editor. With Code Companion

we are going to look at the code that comes with Itty Bitty

City to understand how it is a set of instructions that

program your projects, how it can be changed and how you

can change the way your projects work.

What does ‘Code’ do?

Part of what you do when you assemble your Itty Bitty City

electronics projects using a mBattery, mCookie modules,

and sensors, is to make a micro-computer. Like any

computer, it needs instructions or code on what to do.

Without this code, the micro-computer or CPU found in the

red Core Module has no idea what to do or how to operate.

What does code look like?

Code looks like a list of words or sentences each on its own

line. Each line of word or sentences is called a line of code.

Lines of code often include numbers and punctuation.

Where do we write these lines of code?

Lines of code are written in a program on a computer. This

program is called an “IDE editor” which has special

functions such as checking the code, setting the

communications mode to the project’s computer and

setting which type of computer board you are using.

The IDE Editors from Microduino also come with added

libraries of pre-made code for the Microduino modules and

sensors including those that come with Itty Bitty City. This

makes it easy to add new code to your program.

The ‘program’.

All the lines of code together that form a single project are

called its ‘program’. You may have heard people referring

to program that they need to make or modify for a

computer. A program are the lines of code and can be

opened in your editor, which we already discussed’, or it

can be the program already stored in the Microduino

computer (CPU) in your project.

©2018. Microduino Inc. - All Rights Reserved 3

A word of good advice…. as you make or modify a program,

you can save the program as a file on your PC. However, it

is best to always make a new name for each file if you save

it to your PC so you don’t lose the original file.

Let’s do something…

OK, so we covered some of the basics. Now let’s get some

of this going to see better what you’ve been reading about.

We are going to start by exploring the code for the Itty Bitty

City Windmill project. So please get it ready by opening the

Arduino IDE program, and let’s see how to change the way

it works!

By now, you have already confirmed the proper operation

of the standard Windmill project. We can now continue to

look at some of the details of the Windmill’s code and make

some changes!

If you like, you can also follow along on the pages of the Itty

Bitty City Manual, pages 19-26.

You will need to have your IDE editor running and the

Windmill file open, and it looks something like this:

Notice the four tabs highlighted in the yellow square above.

The white highlighted tab is simply the current tab we are

looking at. The other tabs will in turn also become

highlighted when selected. Only one tab however can be

selected at a time. A program can have many tabs. It is up

to the programmer (that is YOU now) as to how many tabs

there are and the names of the tabs. The tabs are simply a

way to flip from one section of the program to another. We

will come back to these tabs shortly.

Notice below that the first section of text is a light grey. That

is because all text that have ‘/*’ in the beginning and end

with this ‘*/’ are notes and automatically are in grey text.

Notes are very handy, if not essential, to inform the reader

or programmer about on this program runs. It is like a little

notepad right in the program.

©2018. Microduino Inc. - All Rights Reserved 4

In the Windmill program the first section says how the

Windmill runs and what should expect when it does run.

Read the text below the sections that have headers reading:

 [What is: Windmill?]

[You will]

Read through these two sections to see what the Windmill
does and how to make it function normally.

The next section is headed with the words:

Now this is where we start to really see how this program

is organized. The text in this section tells us:

Click the userDef.h tab to change below values to

your own liking. :)

VOICE_MIN: Minimum noise level to activate the

windmill and LED.

MOTOR_SPEED_MAX: How fast the windmill spins.

TIME_RUN: How long the windmill and LED will be

on.

 BRIGHT_MAX: Max LED brightness.

Notice the reference above to the userDef.h tab in the

above text. The original programmer is telling us that you

can change the values, in this case we call the variables, to

change how the Windmill operates.

We said we would come back to the tabs and now is that

time. Click on the Windmill tab again, and under the

‘Questions?’ heading, you see now in green/black/blue text

the first lines of ‘code’ that read like this:

#include <Microduino_Key.h>

#include"userDef.h"

#include"colorLed.h"

#include"motor.h"

The program above is establishing (sometimes called

‘calling out’) what is to be included on this and on any other

specific tab pages to make the Windmill project function.

©2018. Microduino Inc. - All Rights Reserved 5

For now, we will bypass the meaning of the remaining text

at the bottom of the Windmill tab page as we are just

starting out.

Now let’s select the tab called ‘userDef.

Once this tab is selected, this is where you can make

changes to the Windmill program!

In the top of the page below is where we tell the Core

Module/CPU what we plugged into the hub, and where we

plugged in to (page 21 of the Itty Bitty City Manual). Don’t

worry about the first line below. For example, notice the

second line says the color LED is plugged into HUB on pin

socket 12 (yellow square). The third line says the

microphone is plugged into HUB socket A6 (green square).

This is setting up the hardware just as it is shown in the Itty

Bitty City manual page 21, (and another example of calling

out.) You can change which socket the LED and Microphone

plug into in the HUB as long as you change the values shown

below to match.

#define DEBUG 0 //Serial monitor debugging ON/OFF.

#define PIN_LED 12 //ColorLED pin.

#define PIN_MIC A6 //MIC Sensor pin.

#define VOICE_MAX 1023 //Maximum noise level to

activate the windmill and LED.

#define LED_NUM 2

We won’t make any changes for now until we understand

the meaning of variables, and when a program is written it

almost always includes sets of them. It makes programming

much easier to write and to experiment with different

values. A variable is a specific value that you, as a

programmer, sets. It can also be easily changed.

For example, suppose you want to repeatedly refer to the

mathematical term ‘pi’ in a program. Well, instead of

writing 3.1415926535897 each time you just define pi once

as 3.1415926535897 each time in your program.

Sometimes there are hundreds of variables. To setup a

Variable, in its simplest sense, you set a ‘label’ followed by

a ‘value’. The ‘label’ becomes the easy to remember name

of variable and it is the label that is used throughout a

program. So, our example with ‘pi’ it might look like this:

##define pi 3.1415926535897

It would be hard to have to change the same variable value

throughout a program (remember it is not uncommon for a

program to be millions of lines long!). So by using a label

called ‘pi’ you can change the value of the variable in one

location and the label will have the new value everywhere

it is used in the program.

Back to our Windmill… at the lower portion of tab userDef.h

there are four number of variables defined:

©2018. Microduino Inc. - All Rights Reserved 6

#define VOICE_MIN 400

//Minimum noise level to activate the windmill and

LED. -Increasing this means you//will have to be

louder to activate the windmill.

#define MOTOR_SPEED_MAX 100

//How fast the windmill spins. Fastest speed is 255.

A negative value will make

//the Motor spin in the other direction. Note: 255 is

very fast. Be careful!

#define TIME_RUN 10*1000

//How long the windmill and LED will be on.

Changing the number "10" to "20" means

//it will spin for 20 seconds. Do not change the

"1000".

#define BRIGHT_MAX 128

//Max LED brightness. Max brightness is 255.

Minimum brightness is 0.

In Arduino IDE coding the term ‘#define’ means we are

going to define a new variable. In this case, we see the label

of ‘MOTOR_SPEED_MAX is defined and has a variable value

of numeric 100.

Notice also that on the lines of code for the variables, there

are ‘//’ followed by text which are in grey. The ‘//’ means

that the text following is not code. It is comments from the

programmer to help other programmers who are using or

revising the code, to know or remember the details of the

variable. It is sometimes critical to let other programmers

know what the code is doing and why as it is not always

obvious. However, in the files of Itty Bitty City projects these

comments are directed to us, the users, to act as helpful

information.

For example…

On the line for: #define BRIGHT_MAX 128

The comments say the maximum variable value you can use

is 255 and the minimum is 0. By the way if you set it to 0 ,

no light will come from the LED.

As you can see, you can have a fascinating time changing

your variables. Each time you change a variable and want

to see its effect on your windmill project, you need to upload

the program to the Windmill using the same process as you

did on pages 23-25 in your manual.

Some things to try…

• Make the windmill turn backwards

• Make the windmill go faster

• Make the Windmill stay on longer

Tab - Recap

Although we used the Itty Bitty City Windmill project as our

example, all the Itty Bitty City projects use the same tab

approach. The left most tab, whose tab name includes the

©2018. Microduino Inc. - All Rights Reserved 7

project name, gives an overview as to the project’s purpose

code. The right most tab, userDef.h, contains the variables

that are easy to modify, upload and run in your Itty Bitty

City projects.

There are the other tabs, between the project name tab and

the userDef.h tab, that we have not talked about on the

Windmill project; colorLED.h and motor.h. These tabs

contain more sophisticated code that sets up the use color

LED and windmill drive motor we just adjusted on the

userDef.h tab. Look at the following;

In the tabs ‘colorLed.h’ and ‘motor.h”, the code contained

there is not nearly as easy to understand as the variables.

These pieces of code are more sophisticated requiring a

higher-level understanding of code. The code in these tabs

are essential for proper operation.

Changing variables, as you now have seen, is not as difficult

as you may have thought. You may be very pleased to see

that changing the way an ITTY BITTY City project operates is

not so difficult, and just doing this can give you hours of fun

and experimentation! For those who want even more of a

challenge, continue on. Remember, with Itty Bitty City there

are no bad mistakes, just learning experiences.

More Fun, -adding an additional motor.

So now you have seen some easy ways to change how and

Itty Bitty City project runs. -Here’s more. Back on the

‘_01_Windmill’ tab, for example, in the grey text area

below, it says you can add a second motor!

Next, if you check the motor code in the ‘motor.h’ tab we

see that BOTH of the motor sockets on the Motor module

are supported in the program code:

Now just plug in your second Itty Bitty City motor into the

second socket of the Motor module. It works!

Let’s do it! (More Fun)

A frequent process in coding, at the learning and hobbyist

level, is to use pieces of code that already exists. If you want

to experiment with making your own project, which we

©2018. Microduino Inc. - All Rights Reserved 8

encourage you to do, you can copy/paste section code from

known good programs into your own program.

For fun, let’s add a buzzer to the Windmill that came with

Itty Bitty City that is not used in the Windmill project. By

adding a buzzer, we can play some music! Before

proceeding, make sure you open both the IDE Windmill

project and the Piggy Bank project files, sometimes called

the sketch.

First go to ‘File’ on Windmill and click on Save As. Type in

_01_Windmill_w_buzzer and click save. You will see an

altered name change on upper left hand the tab.

Next, to add the music selections into the Windmill project

from Piggy Bank, you will next need to add a ‘music.h tab’

in Windmill.

On Windmill, select the down arrow button in the upper

right corner of the IDE editor screen.

Select ‘New Tab’ and name the tab below as ‘music.h’ in

the lower right-hand corner. A new ‘music. h’ tab will

appear above.

Next, copy the entire page from the Piggy Bank music.h

files, and paste it into the Windmill’s newly created

music.h page.

With the above completed, we need to make changes to

the Windmill sketch. Look at the Piggy Bank program and

select the left tab entitled, ‘_05_piggy_bank’.

Scrolling down the sketch, you will see some grey text and

then some definitions. What we want to add first to our

Windmill sketch is ‘#include "music.h"’. Copy that line from

Piggy Bank project and paste into the Windmill project

found under the _01_ with_buzzer tab like below:

©2018. Microduino Inc. - All Rights Reserved 9

We have now ‘borrowed’ this line of code from the Piggy

Bank project and pasted into Windmill.

Since we are adding a buzzer onto the Windmill, we need to

next tell the Windmill computer/CPU where it will be

connected to on the HUB. So, go back to the ‘_05_Piggy

Bank’ file now open in your IDE Editor, and go to the

‘userDef.h tab’ and find the line that designates which HUB

socket the buzzer will be attached to.

We see the buzzer below is attached to socket 10 of the

HUB. Copy this line and paste to the bottom of the list on

the Windmill’s list of settings in ‘userDef.h’ tab. It should

then look like this:

The next steps are ones that may seem a bit hard if you are

not yet familiar with actual coding. We will explain the

changes and what they do. Each change is numbered and

then explained as we go. Notice in the next illustration, we

are going to copy/paste three additional inserts under the

_01_Windmill_w_buzzer tab.

Let’s assume you don’t know code instructions or

commands. Ok? Good! So, when we dig into this we are

going to use our power of observation more than our actual

knowledge of instructions/commands. So, let’s make the

following observations of the code we will be borrowing

and pasting from the Piggy Bank project (first left tab),

making sure you include the exact following commands (in

bold) in the designated places as described above;

1. playIndex = 0; //Resume music.

‘playIndex = 0;’ appears to be a command to make
the music play (through the buzzer of course). Our
hint is not the command itself but the ‘note’ after
the ‘//’ symbols that say resume music. We are
going to place this line of code in a similar location
in the Windmill code (thank goodness the code

1

2
3

©2018. Microduino Inc. - All Rights Reserved 10

structure of both projects is similar!). Note the
‘”;“ at the end of the command section. This means
this is not the end of the string of commands for
the computer to understand. Copy and then paste:
‘playIndex = 0; //Resume music.’ from Piggy Bank
into Windmill as indicated.

2. !playSound (1);// Play music

Based on the previous line of code we just looked

at, can you start to sense what this line does? You

look at the note (conveniently placed by the

programmer) that says the command ‘!playSound’

means it is a command to play the music. Copy

and then paste ‘!playSound (1);// Play music’ into

the Windmill sketch as indicated. Note above the

insertion of a semi colon between (1) and //

highlighted in yellow.

3. noTone (PIN_BUZZER);

Well, the music from buzzer can’t play forever so

something must turn it off. Remember, devices (as

in things like LEDs, motor, servos, buzzers, sensors),

runs or don’t runs based on how the computer/CPU

is programmed. Copy and then paste

noTone(PIN_BUZZER); into the Windmill sketch as

indicated.

Finally, make sure you re-save your entire new

Windmill scetch you have just created.

The Moment of Truth

Connect a buzzer to socket 10 of the HUB. Check

that you are connected from your PC to the

Windmill computer with the USB cable, AND that

the mBattery is on (checking that the right most

power indicator is red!). Upload the new IDE

program to your Windmill. The Windmill should run

as it did before, BUT now plays a song through the

buzzer, with possibly a second motor.

Congratulations!

P.S. If you want play a different song, change the ‘1’

in the “!playSound (1);//Play Music” command to

any number from 2 to 11 (see the song names on the

music.h tab)

Troubleshooting

If it did not work correctly, do not panic! Some

trouble-shooting hints:

• Is the PC and Windmill connected?

• Is the battery in the Windmill have the red
LED on?

• Have you selected the correct port?

• When you ‘upload’ does the editor say ‘done
uploading’ in the lower status bar?

• If all is OK above, recheck your
connections/wiring and try again.

